Homework 9

Name: SOLUTIONS Date: August 4, 2015
P 1. Determine whether the series converges absolutely or conditional, or diverges.
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Identify the test(s) used and show the conditions of the test hold.

Solution: Note, since cos(mn) = (—1)"
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which diverges by the Limit Comparison Test, with comparison series > -

n= ln

(b) >0, (T_L—il-)ln is convergent by the Alternating Series Test.

(i) an=1/(n+1) > 0.
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(i) apy1 < a, for all n > 1:
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So, Y, Wlos(m) is conditionally convergent.



P 2. Determine whether the series converges or diverges.

Identify the test(s) used and show the conditions of the test hold.

Solution: Y >, % converges absolutely by the Ratio Test.
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converges absolutely and so converges.



