Exam 3

Name: SOLUTIONS Date: August 11, 2015

P 1 (2 Points). State the Divergence Test.

Solution: If $\lim_{n\to\infty} a_n$ does not exist or $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum a_n$ is divergent.

P 2 (2 Points). State the Integral Test.

Solution: Let f(x) be a positive, continuous, decreasing function on $[1, \infty)$. Then

$$\sum_{n=1}^{\infty} a_n \text{ and } \int_{1}^{\infty} f(x) \ dx$$

either both converge or both diverge.

Use the graph of f to answer the following.

(a) Consider the sequence

$$a_n = f(n), \ n \ge 1.$$

Find $\lim_{n\to\infty} a_n$. **Solution**:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3}{n} = 0$$

(b) Consider the sequence

$$b_n = \cos[f(n)], \ n \ge 1.$$

Find $\lim_{n\to\infty} b_n$. **Solution**:

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \cos \frac{3}{n} = 1$$

(c) Determine whether the series converges or diverges.

$$\sum_{n=1}^{\infty} f(n)$$

Solution:

$$\sum_{n=1}^{\infty} f(n) = \sum_{n=1}^{\infty} \frac{3}{n}$$

diverges as a harmonic series.

(d) Determine whether the series converges or diverges.

$$\sum_{n=1}^{\infty} [f(n)]^2$$

Solution:

$$\sum_{n=1}^{\infty} [f(n)]^2 = \sum_{n=1}^{\infty} \left(\frac{3}{n}\right)^2 = \sum_{n=1}^{\infty} \frac{9}{n^2}$$

converges by the *p*-series test (p = 2).

 ${f P}$ 4 (10 Points). Determine whether the series converges or diverges. If it converges, find its sum.

$$\sum_{n=0}^{\infty} \frac{3^{n+1}}{7^n}$$

Solution: Converges by the geometric series test with a=3 and

$$r = \frac{a_{n+1}}{a_n} = \frac{3^{n+2}}{7^{n+1}} \frac{7^n}{3^{n+1}} = \frac{3}{7} < 1.$$

Therefore,

$$\sum_{n=0}^{\infty} \frac{3^{n+1}}{7^n} = \frac{a}{1-r} = \frac{3}{1-3/7} = 21/4.$$

P 5 (10 Points). Determine whether the series converges or diverges. If it converges, find its sum.

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Solution:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$s_1 = 1 - \frac{1}{2}$$

$$s_2 = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} = 1 - \frac{1}{3}$$

$$s_3 = 1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} = 1 - \frac{1}{4}$$

$$s_4 = 1 - \frac{1}{4} + \frac{1}{4} - \frac{1}{5} = 1 - \frac{1}{5}$$

$$\vdots$$

$$s_n = 1 - \frac{1}{n+1}$$

So,

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1} \right) = 1.$$

Therefore, the series converges and

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

P 6 (10 Points). Determine whether the series converges or diverges, explain why.

$$\sum_{n=0}^{\infty} \frac{2n+1}{3n+2}$$

Solution: Note,

$$\lim_{n\to\infty}\frac{2n+1}{3n+2}\stackrel{\infty/\infty}{=}2/3$$

So, by the Divergence Test

$$\sum_{n=0}^{\infty} \frac{2n+1}{3n+2}$$

diverges.

P 7 (10 Points). Determine whether the series converges or diverges, explain why.

$$\sum_{n=1}^{\infty} ne^{-n}$$

Solution: Ratio Test:

• $a_n \neq 0$

•

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{n+1}{e^{n+1}} \cdot \frac{e^n}{n} \right| = \lim_{n \to \infty} \left| \frac{n+1}{ne} \right| = \frac{1}{e} < 1.$$

By the ratio test,

$$\sum_{n=1}^{\infty} ne^{-n}$$

converges absolutely and so converges.

 ${f P}$ 8 (10 Points). Determine whether the series converges absolutely, conditionally, or diverges, and explain why.

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

Solution: Alternating Series Test:

- Let $a_n = 1/\sqrt{n} > 0$.
- $\lim_{n\to\infty} a_n = 0$.
- \bullet $a_{n+1} \leq a_n$:

$$\frac{1}{\sqrt{n+1}} \leq \frac{1}{\sqrt{n}} \Leftrightarrow \sqrt{n} \leq \sqrt{n+1} \Leftrightarrow n \leq n+1 \Leftrightarrow 0 \leq 1.$$

So, by the alternating series test,

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

converges. Absolute Convergence Test:

$$\sum_{n=2}^{\infty} \left| \frac{(-1)^n}{\sqrt{n}} \right| = \sum_{n=2}^{\infty} \frac{1}{\sqrt{n}}$$

which diverges by the *p*-series test (p = 1/2 < 1). Therefore,

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

converges conditionally.

P 9 (10 Points). Find the third Maclaurin polynomial of $f(x) = e^{-3x}$.

Solution:

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \Rightarrow e^{-3x} = \sum_{n=0}^{\infty} \frac{(-3x)^n}{n!} \Rightarrow e^{-3x} \approx \sum_{n=0}^{3} \frac{(-3x)^n}{n!}$$

So, the third Maclaurin polynomial of $f(x) = e^{-3x}$ is

$$\sum_{n=0}^{3} \frac{(-3x)^n}{n!} = 1 - 3x + \frac{9}{2!}x^2 - \frac{27}{3!}x^3 = 1 - 3x + \frac{9}{2!}x^2 - \frac{9}{2}x^3$$

 ${f P}$ 10 (10 Points). Find Taylor series of

$$f(x) = \frac{1}{x}$$

centered at 1.

Solution:

$$f(x) = \frac{1}{x} = \frac{1}{1 + (x - 1)} = \frac{1}{1 - [-(x - 1)]} = \sum_{n=0}^{\infty} [-(x - 1)]^n = \sum_{n=0}^{\infty} (-1)^n (x - 1)^n$$

So, the Taylor series of f(x) centered at 1 is

$$\sum_{n=0}^{\infty} (-1)^n (x-1)^n.$$

P 11 (10 Points). Determine if the series converges or diverges, explain why.

$$\sum_{n=1}^{\infty} \frac{2}{6n+1}$$

Solution: Limit Comparison Test

- Let $a_n = \frac{2}{6n+1}$.
- Comparison Series:

$$\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{2}{6n} = \sum_{n=1}^{\infty} \frac{1}{3n}$$

•

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{2}{6n+1}}{\frac{1}{2n}} = \lim_{n \to \infty} \frac{6n}{6n+1} = 1$$

So, by the Limit Comparison Test,

$$\sum_{n=1}^{\infty} \frac{2}{6n+1}$$

diverges.

P 12 (12 Points). Determine the interval of convergence.

$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{\sqrt{n}}$$

Solution: Ratio Test

• $a_n \neq 0$ for $x \neq 3$.

•

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x-3)^{n+1}}{\sqrt{n+1}} \frac{\sqrt{n}}{(x-3)^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{(x-3)\sqrt{n}}{\sqrt{n+1}} \right|$$

$$= |x-3| \lim_{n \to \infty} \left| \sqrt{\frac{n}{n+1}} \right|$$

$$= |x-3| < 1$$

- $\bullet \ |x-3| < 1 \Leftrightarrow -1 < x-3 < 1 \Leftrightarrow 2 < x < 4 \Leftrightarrow (2,4)$
- For x=2,

$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(2-3)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

which converges by the alternating series test.

• For x = 4,

$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4-3)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

which diverges by the *p*-series test (p = 1/2 < 1).

So, the interval of convergence for

$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{\sqrt{n}}$$

is [2,4).

P 13 (Bonus 2 Points). Find the limit

$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

Solution: Note,

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

So,

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{\sum_{n=0}^{\infty} \frac{x^n}{n!} - 1}{x} = \lim_{x \to 0} \frac{1 + x + \frac{x^2}{2} + \dots - 1}{x} = \lim_{x \to 0} \frac{x + \frac{x^2}{2} + \dots}{x}$$
$$= \lim_{x \to 0} \left(1 + \frac{x}{2} + \dots \right) = 1 + 0 + 0 + \dots = 1$$

P 14 (Bonus 2 Points). Find the sum

$$\sum_{n=0}^{\infty} \frac{1}{5^n n!}$$

Solution: Note,

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

So,

$$\sum_{n=0}^{\infty} \frac{1}{5^n n!} = \sum_{n=0}^{\infty} \frac{(1/5)^n}{n!} = e^{1/5}$$