Exam 3

Name: SOLUTIONS Date: August 11, 2015

P 1 (2 Points). State the Divergence Test.

Solution: If lim a, does not exist or lim a, # 0, then the series Z a, is divergent.
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P 2 (2 Points). State the Integral Test.

Solution: Let f(z) be a positive, continuous, decreasing function on [1,00). Then
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either both converge or both diverge.



P 3. [4 Points| Consider the graph of f below.
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Use the graph of f to answer the following.

(a) Consider the sequence

(¢) Determine whether the series converges or
diverges.
a, = f(n), n>1. s
Find lim a,.
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Solution:

Solution:
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lim a, = lim — =0
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(b) Consider the sequence
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S =32

b, = cos[f(n)], n > 1.

diverges as a harmonic series.
(d) Determine whether the series converges or
Find lim b,. diverges.
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Solution: Z[f(n)]Q
3 n=1
lim b, = lim cos— =1 Solution:
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converges by the p-series test (p = 2)



P 4 (10 Points). Determine whether the series converges or diverges. If it converges, find its

sum.
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Solution: Converges by the geometric series test with a = 3 and
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Therefore,
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= 21/4.
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P 5 (10 Points). Determine whether the series converges or diverges. If it converges, find its

sum.
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So,
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Therefore, the series converges and
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P 6 (10 Points). Determine whether the series converges or diverges, explain why.
532n+1
e 3n + 2

Solution: Note,
lim =

2/3

So, by the Divergence Test

= 2n+ 1
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diverges.

P 7 (10 Points). Determine whether the series converges or diverges, explain why.
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Solution: Ratio Test:
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By the ratio test,
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converges absolutely and so converges.



P 8 (10 Points). Determine whether the series converges absolutely, conditionally, or diverges,

and explain why.
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Solution: Alternating Series Test:
e Let a, =1/y/n > 0.
e lim, ,. a, =0.
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So, by the alternating series test,
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converges. Absolute Convergence Test:
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which diverges by the p-series test (p = 1/2 < 1). Therefore,
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converges conditionally.

P 9 (10 Points). Find the third Maclaurin polynomial of f(z) = ™37,

Solution:

[e.e] n

z" . . - (—32)
zon_ Z - NZ n!

So, the third Maclaurin polynomial of f(z) =
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P 10 (10 Points). Find Taylor series of

centered at 1.

Solution:
e e R e = sy D DR D W

So, the Taylor series of f(x) centered at 1 is

P 11 (10 Points). Determine if the series converges or diverges, explain why.
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Solution: Limit Comparison Test
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e Comparison Series:
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diverges.



P 12 (12 Points). Determine the interval of convergence.

S
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Solution: Ratio Test

e a, #0 for x # 3.

. ans . |(x =3t n
li = lim
= lim —(x —3)Vn
= |z — 3| lim " ’
=z -3l <1

e z-3<le-l<r-3<le2<r<is (2,4)

e For z =2,

n=1 \/ﬁ n=1 \/ﬁ n=1 \/ﬁ
which converges by the alternating series test.
e For z =4,
Sy ey
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which diverges by the p-series test (p = 1/2 < 1).
So, the interval of convergence for
n=1 \/ﬁ

is [2,4).



P 13 (Bonus 2 Points). Find the limit

Solution: Note,
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Solution: Note,

So,




