7.4 Arc Length and Surfaces of Revolution

Name:

Date: July 9, 2015

P 8. Find the arc length of the graph of

$$y = \frac{x^4}{8} + \frac{1}{4x^2}$$

on [1, 3].

 ${\bf P}$ 12. Find the arc length of the graph of

 $y = \ln(\cos x)$

on $[0, \pi/3]$.

 ${\bf P}$ 14. Find the arc length of the graph of

$$y = \ln\left(\frac{e^x + 1}{e^x - 1}\right)$$

on $[\ln 2, \ln 3]$.

 ${\bf P}$ 16. Find the arc length of the graph of

$$x = \frac{1}{3}\sqrt{y}(y-3)$$

for $1 \le y \le 4$.

P 44. Find the area of the surface of revolution obtained by revolving the curve $y = 1 - x^2/4$, $0 \le x \le 2$, about the *y*-axis.

P 46. Find the area of the surface of revolution obtained by revolving the curve y = x/2 + 3, $1 \le x \le 5$, about the *y*-axis.