5.3 Riemann Sums and Definite Integrals

Name:

Date: June 16, 2015

P 4. Evaluate the definite integral by the limit definition.

 $\int_{-2}^{3} x \ dx$

P 6. Evaluate the definite integral by the limit definition.

$$\int_{1}^{4} 4x^2 dx$$

 ${\bf P}$ 8. Evaluate the definite integral by the limit definition.

$$\int_{-2}^{1} (2x^2 + 3) \, dx$$

P 20. Set up but do not evaluate, the definite integral that yields the area of the region bounded by the graphs of

$$f(x) = \frac{4}{x^2 + 2}$$
, $y = 0$, $x = -1$, and $x = 1$

P 26. Set up but do not evaluate, the definite integral that yields the area of the region bounded by the graphs of

$$f(x) = e^{-x}$$
, $y = 0$, $x = 0$, and $x = 2$

P 46. Given

$$\int_{0}^{3} f(x) \, dx = 4 \text{ and } \int_{3}^{6} f(x) \, dx = -1$$

(a)
$$\int_0^7 f(x) dx$$

(b)
$$\int_5^0 f(x) dx$$

(c)
$$\int_5^5 f(x) \, dx$$

(d)
$$\int_0^5 3f(x) \, dx$$