3.3 Product and Quotient Rule and Higher-Order Derivatives

Name:

Date: June 1, 2015

P 28. Find the derivative.

$$f(x) = \frac{x^2 + 5x + 6}{x^2 - 4}$$

P 34. Find the derivative.

$$h(x) = (x^2 + 3)^3.$$

P 36. Find the derivative.

$$g(x) = x^2 \left(\frac{2}{x} - \frac{1}{x+1}\right).$$

P 38. Find the derivative.

$$f(x) = (x^3 - x)(x^2 + 2)(x^2 + x - 1)$$

P 42. Find the derivative.

$$f(\theta) = (\theta + 1)\cos\theta$$

P 46. Find the derivative.

$$y = e^x - \cot x$$

P 48. Find the derivative.

$$h(x) = \frac{1}{x} - 12\sec x$$

P 52. Find the derivative.

 $y = x \sin x + \cos x$

P 63. Find the derivative of
$$y = \frac{1 + \csc x}{1 - \csc x}$$
 at $(\pi/6, -3)$.

P 68. Find an equation of the tangent line to the graph of $f(x) = (x-2)(x^2+4)$ at (1,-5).

P 74. Find an equation of the tangent line to the graph of $f(x) = \frac{e^x}{x+4}$ at (0, 1/4).

P 80. Determine the point(s) where $f(x) = \frac{x^2}{x^2 + 1}$ has a horizontal tangent line.

P 82. Determine the point(s) where $f(x) = e^x \sin x$ on $[0, \pi]$ has a horizontal tangent line.

P 112. Let g(2) = 3, g'(2) = -2, h(2) = -1, h'(2) = 4, and f(x) = 4 - h(x). Find f'(2).

P 114. Let g(2) = 3, g'(2) = -2, h(2) = -1, h'(2) = 4, and $f(x) = g(x) \cdot h(x)$. Find f'(2).