Exam 1 Review Problems

Name:

Date:

P 1. Consider

$$f(x) = \begin{cases} Ax^2 - 2x, \text{ if } x < -2\\ 3, \text{ if } x = -2\\ x^3 + 2B, \text{ if } x > -2 \end{cases}$$

- (a) Find the values of A and B that make f(x) continuous for all real x.
- (b) Find the equation of the tangent line to f(x) at x = 1.

P 2.

- (a) Use the definition of the derivative to find the derivative of f(x) = C where C is a constant.
- (b) The line y = 5x + 1 is tangent to the curve $f(x) = ax^3 + bx^2 + cx$ at the point (1, 6). Moreover, f''(1) = -6. Find a, b, and c.

 ${\bf P}$ 3. Using the definition of the derivative, find the derivative of

$$f(x) = \frac{1}{\sqrt{x-6}}$$

P 4. Find the following limits

(a)
$$\lim_{x \to 2^-} \frac{x^2 - 4}{|x - 2|}$$

(b)
$$\lim_{x \to \infty} (\sqrt{3x^2 - 4x + 2} - \sqrt{3x^2 + 1})$$

P 5.

(a) Consider the function

$$f(x) = \begin{cases} \frac{x^2 - x - 2}{2x + 2}, & x \neq -1\\ A, & x = -1 \end{cases}$$

If possible, choose A such that f(x) is continuous at x = -1, or explain why this is not possible. (Justify your answer).

(b) Evaluate
$$\lim_{x \to 2^{-}} \frac{2x^2 - 8}{|x - 2|}$$

P 6. Find the vertical and horizontal asymptotes for the function $f(x) = \frac{2e^x}{e^x - 5}$.

P 7. Using the limit definition of the derivative, show that

$$\frac{d}{dx}[2x^2] = 4x.$$

P 8. Find $\lim_{x \to 4^+} \frac{4-x}{|4-x|}$

P 9. Find
$$\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2} \right)$$
.

P 10. Let

$$f(x) = \begin{cases} \sqrt{-x}, & \text{if } x < 0\\ 3 - x, & \text{if } 0 \le x < 3\\ (x - 3)^2, & \text{if } x > 3 \end{cases}$$

Where is this function discontinuous and why?

P 11. Determine the parabola $y = ax^2 + bx + c$ that passes through the point (1, 4) and whose tangent lines at x = -1 and x = 5 have slopes 6 and -2, respectively.

P 12. Determine all the horizontal asymptotes for the function

$$f(x) = \frac{x+2}{\sqrt{9x^2+4}}.$$

 ${\bf P}$ 13. Find the following limits. If the limit does not exist, explain why.

1.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 + 2x - 8}$$
2.
$$\lim_{x \to 1^+} \frac{-(x^2 - 1)}{|1 - x|}$$

P 14. Determine the value of c such that

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{cx^2} = 1.$$

P 15. Use the graphs of f and g to answer the following.

(a) Determine all values of x for which g is not (e) Determine the relative extrema of f. differentiable and explain why.

- (b) Determine the intervals on which f is concave up.
- (f) Does f have a global minimum? If so, what is the global minimum? If not, explain why.
- (c) Determine the inflection points of g.
- (d) Determine the intervals on which f is increasing.
- (g) Does f defined on [-3, 0] have a global minimum? If so, what is the global minimum? If not, explain why.

P 16 (21 Points). Use the graphs of f and g to answer the following.

(a) Determine all values of x for which g is not (e) Determine the relative extrema of f. differentiable and explain why.

- (b) Determine the intervals on which f is concave up.
- (c) Determine the inflection points of f.
- creasing.

- (f) Does f have a global maximum? If so, what is the global maximum? If not, explain why.
- (g) Does f defined on [-3,0] have a global maximum? If so, what is the global maximum? If not, explain why.
- (d) Determine the intervals on which g is in- (h) Determine the intervals on which g is constant.