16.6 Applications of Integration to Probability

Name:

Date:

P 1. Check whether p(x, y) = 1/2 is a joint density function, where $R = \{(x, y) \mid 4 \le x \le 5, -2 \le y \le 0\}$. Assume p(x, y) = 0 outside the region R.

P 3. Check whether p(x, y) = x + y is a joint density function, where $R = \{(x, y) \mid -1 \le x \le 1, 0 \le y \le 1\}$. Assume p(x, y) = 0 outside the region R.

P 5. Check whether $p(x, y) = \frac{2}{\pi}(1 - x^2 - y^2)$ is a joint density function, where $R = \{(x, y) \mid x^2 + y^2 \le 1\}$. Assume p(x, y) = 0 outside the region R.

P 11. Let *p* be the joint density function such that p(x, y) = xy in *R*, the rectangle $0 \le x \le 2$, $0 \le y \le 1$, and p(x, y) = 0 outside *R*. Find the fraction of the population satisfying $x \ge y$.

P 17. A joint density function is given by

$$f(x,y) = \begin{cases} kx^2, & \text{for } 0 \le x \le 2 \text{ and } 0 \le y \le 1, \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find the value of k.
- (b) Find the probability that (x, y) satisfies $x + y \leq 2$.
- (c) Find the probability that (x, y) satisfies $x \leq 1$ and $y \leq 1/2$.