
15.2 Optimization

Name:

Date:

P 3. Estimate the position and approximate value of the global maxima and minima on the region below.

P 7. Find the global maximum and minimum of $z = x^2 - y^2$ on $-1 \le x \le 1$, $-1 \le y \le 1$, and say whether it occurs on the boundary of the square.

P 9. Does the function $g(x, y) = x^2 y^2$ have a global maxima and minima in the *xy*-plane?

P 18. Design a rectangular milk carton box of width w, length l, and height h which holds 512 cm³ of milk. The sides of the box cost 1 cent/cm² and the top and bottom cost 2 cent/cm². Find the dimensions of the box that minimize the total cost of materials used.

P 30. Let f(x,y) = 2/x + 3/y + 4x + 5y in the region R where x, y > 0.

- (a) Explain why f must have a global minimum at some point in R.
- (b) Find the global minimum.

P 33. Explain what is wrong with the statement: 'A function having no critical points in a region R cannot have a global maximum in the region.'

P 34. No continuous function has a global minimum on an unbounded region R.

P 35. If f(x, y) has a local maximum value of 1 at the origin, then the global maximum is 1.