14.4 Gradients and Directional Derivatives in the Plane

Name:

Date:

P 7. Find the gradient of $z = (x + y)e^y$.

P 21. Find the gradient of $f(x, y) = 1/(x^2 + y^2)$ at (-1, 3).

P 33. Use the contour diagram of f below to decide if the the directional derivative at the point (-2, 2), in the direction \vec{i} , is positive, negative, or approximately zero.

P 34. Use the contour diagram of f below to decide if the the directional derivative at the point (0, -2), in the direction $\vec{i} + 2\vec{j}$, is positive, negative, or approximately zero.

P 46. Let f(P) = 15 and f(Q) = 20 where P = (3, 4) and Q = (3.03, 3.96). Approximate the directional derivative of f at P in the direction of Q.

P 65. A sketch of the surface z = g(x, y) is given below. What is the sign of each of the following directional derivatives?

- (a) $g_{\vec{u}}(2,5)$ where $\vec{u} = (\vec{i} \vec{j})/\sqrt{2}$.
- (b) $g_{\vec{u}}(2,5)$ where $\vec{u} = (\vec{i} + \vec{j})/\sqrt{2}$.

