13.3 The Dot Product

Name:

Date:

P 5. Perform the following operation

$$\vec{c} \cdot \vec{a} + \vec{a} \cdot \vec{y}$$

on the following 3-dimensional vectors

$$\vec{a} = 2\vec{j} + \vec{k}$$
 $\vec{b} = -3\vec{i} + 5\vec{j} + 4\vec{k}$ $\vec{c} = \vec{i} + 6\vec{j}$

P 7. Perform the following operation

$$\left(\vec{a} \cdot \vec{b} \right) \vec{a}$$

on the following 3-dimensional vectors

$$\vec{a} = 2\vec{j} + \vec{k}$$
 $\vec{b} = -3\vec{i} + 5\vec{j} + 4\vec{k}$ $\vec{c} = \vec{i} + 6\vec{j}$

P 13. Find a normal vector to the plane

$$z = 3x + 4y - 7$$

P 18. Find an equation of the plane perpendicular to $5\vec{i} + \vec{j} - 2\vec{k}$ and passing through (0, 1, -1).

P 25. Compute the angle between

$$\vec{i} + \vec{j}$$
 and $\vec{i} + 2\vec{j} - \vec{k}$

P 32. Match the plane in (a)-(d) with one or more of the descriptions in (I)-(IV).

- (a) 3x y + z = 0
- (b) 4x + y + 2z 5 = 0
- (c) x + y = 5
- (d) x = 5
 - (I) Goes through the origin.
 - (II) Has a normal vector parallel to the xy-plane.
 - (III) Goes through the point (0, 5, 0).
- (IV) Has a normal vector whose dot products with $\vec{i}, \vec{j}, \vec{k}$ are all positive.