12.2 Graphs and Surfaces

Name:

Date:

P 2. Match the functions with their graphs below

- (a) $z = 2 + x^2 + y^2$
- (b) $z = 2 x^2 y^2$
- (c) $z = 2(x^2 + y^2)$
- (d) z = 2 + 2x y
- (e) z = 2

- (a) $z = \frac{1}{x^2 + y^2}$
- (b) $z = -e^{-x^2 y^2}$
- (c) z = x + 2y + 3
- (d) $z = -y^2$
- (e) $z = x^3 \sin y$

P 16. Find an equation for the sphere of radius 3 centered at $(0, \sqrt{7}, 0)$.

P 17. Find an equation for the paraboloid obtained by moving the surface $z = x^2 + y^2$ so that its vertex is at (1,3,5), its axis is parallel to the *x*-axis, and the surface opens towards negative *x* values.

P 18. Suppose the concentration, C, in mg per liter, of a drug in the blood is a function of x, the amount, in mg, of the drug given and t, the time in hours since the injection. For $0 \le x \le 4$ and $t \ge 0$, we have $C = f(x,t) = te^{-t(5-x)}$. Graph f(a,t) for a = 1, 2, 3, 4 on the same axes. Describe how the graph changes as a increases and explain what this means in terms of drug concentration.

