8.2 Applications to Geometry

Name:

Date:

P 11. The region bounded by y = 1/(x+1), y = 0, x = 0, and x = 1 is rotated about the x-axis. Find the volume of the resulting solid of revolution.

P 13. The region bounded by $y = x^2$, y = x, x = 0 and x = 1 is rotated about the x-axis. Find the volume of the resulting solid of revolution.

P 15. Find the arc length of the graph of $f(x) = x^2/2$ from x = 0 to x = 2.

P 25. Set up, but do not evaluate, an integral that represents the volume obtained when the region bounded by $y = \sqrt[3]{x}$ and x = 4y, in the first quadrant, is rotated about the axis x = 9.

P 27. Set up, but do not evaluate, an integral that represents the volume obtained when the region bounded by y = 0, x = 9, and $y = \frac{1}{3}x$, in the first quadrant, is rotated about the axis y = -2.

P 41. Find the volume of the solid obtained by rotating the region bounded by $y = x^2, y = 1$, and the *y*-axis, for $x \ge 0$, about the *x*-axis.