6.1 Antiderivatives Graphically and Numerically

Name:

Date:

P 3. Use the figure below and the fact that P = 2 when t = 0 to find values of P when t = 1, 2, 3, 4 and 5.

P 5. Sketch two function F such that F' = f. In one case let F(0) = 0 and in the other, let F(0) = 1.

P 8. Sketch two function F such that F' = f. In one case let F(0) = 0 and in the other, let F(0) = 1.

P 13. Estimate f(x) for x = 2, 4, 6, using the given values of f'(x) and the fact that f(0) = 100.

x	0	2	4	6	
f'(x)	10	18	23	25	

P 16. Assume f' is given by the graph below. Suppose f is continuous and that f(0) = 0.

- (a) Find f(3) and f(7).
- (b) Find all x with f(x) = 0.
- (c) Sketch a graph of f over the interval $0 \le x \le 7$.

P 19. Using the figure below, sketch a graph of an antiderivative G(t) of g(t) satisfying G(0) = 5. Label each critical point of G(t) with its coordinates.

P 23. Sketch two function F with F'(x) = f(x). In one, let F(0) = 0; in the other let F(0) = 1. Mark x_1, x_2 , and x_3 on the x-axis of your graph. Identify local maxima, minima, and inflection points of F(x).

P 29. The graph below records the spillage rate at a toxic waste treatment plant over the 50 minutes it took to plug the leak.

(a) Complete the table for the total quantity spilled in liters in time t minutes since the spill started.

Time $t(\min)$	0	10	20	30	40	50
Qantity (liters)	0					

(b) Graph the total quantity leaked against time for the entire fifty minutes. Label axes and include units.

