5.4 Theorems About Definite Integrals

Name:

Date:

5.4: 3,31

- **P 1.** Suppose $f'(x) = \sin(x^2)$ and f(0) = 2. Use a graph of f'(x) to decide which is larger:
 - (i) f(0) or f(1)
 - (ii) f(2) or f(2.5)

P 3. The figure below shows f. If F' = f and F(0) = 0, Find F(b) for b = 1, 2, 3, 4, 5, 6.

P 4. Find the area of the region under the graph of $y = e^x$ and above y = 1 for $0 \le x \le 2$.

P 11. Find the area of the region under the graph of $y = e^{-x}$ and above $y = \ln x$ for $1 \le x \le 2$.

P 21. Let
$$\int_a^b f(x) dx = 8$$
, $\int_a^b (f(x))^2 dx = 12$, $\int_a^b g(t) dt = 2$, and $\int_a^b (g(t))^2 dt = 3$. Find
 $\int_a^b (f(x) + g(x)) dx$.

P 23. Let $\int_a^b f(x) dx = 8$, $\int_a^b (f(x))^2 dx = 12$, $\int_a^b g(t) dt = 2$, and $\int_a^b (g(t))^2 dt = 3$. Find $\int_a^b ((f(x))^2 - (g(x))^2) dx$.

P 30. Find $\int_2^5 f(x) dx$ given that

$$\int_{2}^{5} (3f(x) + 4) \, dx = 18.$$