
5.1 How Do We Measure Distance Traveled?

Name: Date:

- **P 1.** The figure below show the velocity of a car for $0 \le t \le 12$ and the rectangles used to estimate the distance traveled.
- (a) Do the rectangles represent a left or right sum?
- (b) Do the rectangles lead to an upper or a lower estimate?
- (c) What is the value of n?
- (d) what is the value of Δt ?
- (e) Given an approximate value for the estimate.

P 3. The velocity v(t) in the given table is decreasing, $2 \le t \le 12$. Using n = 5 subdivisions to approximate the total distance traveled, find

(a) An upper estimate

(b) A lower estimate

\overline{t}	2	4	6	8	10	12
v(t)	44	42	41	40	37	35

- **P 4.** A car comes to a stop five seconds after the driver applies the brakes. While the brakes are on, the velocities in the table are recorded.
- (a) Give the lower and upper estimates of the distance the car traveled after the brakes were applied.
- (b) On a sketch of velocity against time, show the lower and upper estimates of part (a).
- (c) Find the difference between the estimates. Explain how this difference can be visualised on the graph in part (b).

Time since brakes applied (sec)						
Velocity (ft/sec)	88	60	40	25	10	0

P 15. Roger runs a marathon. His friend Jeff rides behind him on a bicycle and clocks his speed every 15 minutes. Roger starts out strong, but after an hour and a half he is so exhausted that he has to stop. Jeff's data follow:

Time since start (min)	0	15	30	45	60	75	90
Speed (mph)	12	11	10	10	8	7	0

- **P 27.** A car initially going 50 ft/sec brakes at a constant rate (constant negative acceleration), coming to a stop in 5 seconds.
- (a) Graph the velocity from t = 0 to t = 5.
- (b) How fast does the car travel?
- (c) How far does the car travel if its initial velocity is doubled, but it brakes at the same constant rate?