10.1 Taylor Polynomials

Name:

Date:

P 5. Find the Taylor polynomials of degree 2, 3, and 4 approximating $\cos x$ near 0.

P 6. Find the Taylor polynomials of degree 5, 7, and 9 approximating $\ln(1+x)$ near 0.

P 12. Find the Taylor polynomial of degree 4 near x = 2 of e^x .

P 18. The function f(x) is approximated near x = 0 by the third-degree Taylor polynomial

 $P_3(x) = 2 - x - \frac{x^2}{3} + \frac{2x^3}{3}.$

Find the value of

(a) f(0)

- (b) f'(0)
- (c) f''(0)
- (d) f'''(0)

P 30. Use the fourth-degree Taylor approximation for x near 0,

$$\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!},$$

to explain why $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$.

P 31. Use a fourth-degree Taylor approximation for e^h , for h near 0, to evaluate the following limits. Would your answer be different if you used a Taylor polynomial of higher degree?

(a)
$$\lim_{h \to 0} \frac{e^h - 1 - h}{h^2}$$

(b) $\lim_{h \to 0} \frac{e^h - 1 - h - \frac{h^2}{2}}{h^3}$