6.4 Second Fundamental Theorem of Calculus

Name:

Date:

P 5. Write an expression for the function, f(x), with the given properties.

$$f'(x) = \frac{\sin x}{x}$$
 and $f(1) = 5$

P 13. Find

$$\frac{d}{dx} \left[\int_1^x (1+t)^{200} dt \right]$$

P 15. Find

$$\frac{d}{dx} \left[\int_{0.5}^{x} \arctan(t^2) \, dt \right]$$

P 18. Use properties of the function $f(x) = xe^{-x}$ to determine the number of values x that make F(x) = 0, given $F(x) = \int_{1}^{x} f(t) dt$.

P 25. Let
$$F(x) = \int_0^x \sin(2t) dt$$
.

(a) Evaluate $F(\pi)$

⁽b) Draw a sketch to explain geometrically why the answer to part (a) is correct.

P 29. Find the value of F(1) given that $F'(x) = e^{-x^2}$ and F(0) = 2.

P 35. Find

$$\frac{d}{dx} \left[\int_0^{x^2} \ln(1+t^2) \ dt \right]$$