4.1 Using First and Second Derivatives

Name:

Date:

P 5. Find the critical points and inflection points of $f(x) = x^5 - 10x^3 - 8$.

P 7. Find the critical points and inflection points of $f(x) = 5x - 3 \ln x$.

P 9. Find all local maxima and minima of $f(x) = 3x^4 - 3x^3 + 6$.

P 12. Find all local maxima and minima of $f(x) = \frac{x}{x^2 + 1}$.

P 27. Sketch a possible graph of y = f(x), using the given information about the derivatives y' = f'(x) and y'' = f''(x). Assume that the function is defined and continuous for all real x.

P 29. Sketch a possible graph of y = f(x), using the given information about the derivatives y' = f'(x) and y'' = f''(x). Assume that the function is defined and continuous for all real x.

y' undefined y' > 0	y' = 0 $\downarrow y' > 0$	→ X
	X2	
y" undefined y" > 0	y" > 0	v

P 49. The differentiable function f has x = 1 as its only zero and x = 2 as the x-coordinate of its only critical point. For $y = f(x^2 - 3)$, find all (a) Zeros and (b) Critical points.