2.3 The Derivative of a Function

Name:

Date:

P 15. Sketch the graph of f(x) = x(x-1), and use this graph to sketch f'(x).

P 22. Find a formula for the derivative of m(x) = 1/(x+1) using difference quotients.

P 24. Draw a possible graph of y = f(x) given the following information of about its derivative.

• f'(x) > 0 for x < -1. • f'(x) < 0 for x > -1. • f'(x) = 0 at x = -1.

P 26. Given the numerical values shown, find approximate values for the derivative of f(x) at each of the x-values given. Where is the rate of change of f(x) positive? Where is it negative? Where does the rate of change of f(x) seem to be greatest?

x	0	1	2	3	4	5	6	7	8
f(x)	18	13	10	9	9	11	15	21	30

P 53. Explain what is wrong with the statement:

"A function, f, whose graph is above the x-axis for all x has a positive derivative for all x."

P 54. Explain what is wrong with the statement: "If f'(x) = g'(x) then f(x) = g(x)."

P 59. Is the statement true or false? Give an explanation for your answer. "If f'(x) is increasing, then f(x) is also increasing."