Final Exam Review Problems

Name:

P 1.4. 33. Determine whether the line x = 4 represens y as a function of x.

P 1.5. 37. Graph

$$f(x) = \frac{3x - 1}{x - 6}.$$

Find the x and y-intercepts and asymptotes (if any). Include a table of nice values for which to evaluate f and the corresponding values of f.

P 1.5. 61. Graph

$$f(x) = x(x-2)(x+3).$$

Find the x and y-intercepts and asymptotes (if any). Include a table of nice values for which to evaluate f and the corresponding values of f.

Date: June 23, 2013

P 1.6. 29. Graph

$$f(x) = (x-1)^3 + 2.$$

Find the x and y-intercepts and asymptotes (if any). Include a table of nice values for which to evaluate f and the corresponding values of f.

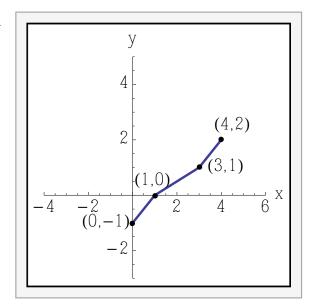
P 1.6. 31. Graph

$$f(x) = 4\sqrt{x}$$

Find the x and y-intercepts and asymptotes (if any). Include a table of nice values for which to evaluate f and the corresponding values of f.

P 1.6. 11. Use the graph of f to sketch each graph.

- (a) y = f(x) + 2
- (b) y = f(x 2)


(c)
$$y = 2f(x)$$

(d) y = -f(x)

(e)
$$y = f(x+3)$$

(f) y = f(-x)

(g)
$$y = f\left(\frac{1}{2}x\right)$$

P 1.6. 31. Graph

$$g(x) = 3 - (x+5)^2.$$

Find the x and y-intercepts and asymptotes (if any). Include a table of nice values for which to evaluate f and the corresponding values of f.

P 1.6. 33. Graph

$$g(x) = 3 + 2(x - 4)^2$$

Find the x and y-intercepts and asymptotes (if any). Include a table of nice values for which to evaluate f and the corresponding values of f.

P 1.6. 53. Graph

$$g(x) = \sqrt{\frac{1}{2}x} - 4$$

Find the x and y-intercepts and asymptotes (if any). Include a table of nice values for which to evaluate f and the corresponding values of f.

P 1.8. 39. Find (a) $f \circ g$ (b) $g \circ f$ and (c) $g \circ g$.

$$f(x) = \sqrt[3]{x-1}$$
 and $g(x) = x^3 + 1$.

P A. 1. Simplify the expression.

$$\frac{-2(x^2-3)^{-3}(2x)(x+1)^3-3(x+1)^2(x^2-3)^{-2}}{[(x+1)^3]^2}$$

P A. 2. Simplify the expression.

$$\frac{(6x+1)^3(27x^2+2) - (9x^3+2x)(3)(6x+1)^2(6)}{[(6x+1)^3]^2}$$

P A. 3. Simplify the expression.

$$\frac{(x+2)^{3/4}(x+3)^{-2/3} - (x+3)^{1/3}(x+2)^{-1/4}}{[(x+2)^{3/4}]^2}$$

P A. 4. Simplify the expression.

$$\frac{2(3x-1)^{1/3} - (2x+1)\left(\frac{1}{3}\right)(3x-1)^{-2/3}(3)}{(3x-1)^{2/3}}$$

P A. 5. Simplify the expression.

$$\frac{1}{(x^2+4)^{1/2}} \cdot \frac{1}{2}(x^2+4)^{-1/2}(2x)$$

P A. 6. Simplify the expression.

$$(x^{2}+5)^{1/2}\left(\frac{3}{2}\right)(3x-2)^{1/2}(3) + (3x-2)^{3/2}\left(\frac{1}{2}\right)(x^{2}+5)^{-1/2}(2x)$$

P CHT 1. 2. A cylindrical can has a volume of 600 cubic centimeters and a radius of 4 centimeters. Find the height of this can.

P CHT 1. 4. Graph

y = 4 - |x|

Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values.

P CHT 1. 5. Graph

$$y = x^2 - 1$$

Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values.

P CHT 1. 12. Graph

$$f(x) = 2x^6 + 5x^4 - x^2.$$

Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate f and the corresponding values of f. Approximate the intervals over which f is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 1. 13. Graph

$$f(x) = 4x\sqrt{3-x}$$

Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate f and the corresponding values of f. Approximate the intervals over which f is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 1. 14. Graph

$$f(x) = |x+5|.$$

Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate f and the corresponding values of f. Approximate the intervals over which f is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 1. 15. Graph

$$f(x) = \begin{cases} 3x + 7, & x \le -3\\ 4x^2 - 1, & x > -3 \end{cases}$$

Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate f and the corresponding values of f. Approximate the intervals over which f is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 1. 16. Graph

$$h(x) = -[[x]].$$

Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate h and the corresponding values of h. Approximate the intervals over which h is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 1. 17. Graph

$$h(x) = -\sqrt{x+5} + 8.$$

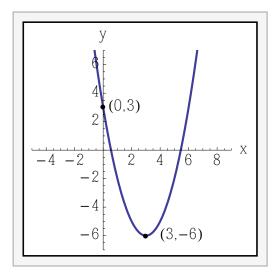
Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate h and the corresponding values of h. Approximate the intervals over which h is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 1. 18. Graph

$$h(x) = -2(x-5)^3 + 3.$$

Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate h and the corresponding values of h. Approximate the intervals over which h is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 1. 19. Find (a) (f + g)(x), (b) (f - g)(x), (c) (fg)(x), (d) (f/g)(x), (e) $(f \circ g)(x)$, and (f) $(g \circ f)(x)$. $f(x) = 3x^2 - 7$, $g(x) = -x^2 - 4x + 5$


P CHT 1. 20. Find (a) (f + g)(x), (b) (f - g)(x), (c) (fg)(x), (d) (f/g)(x), (e) $(f \circ g)(x)$, and (f) $(g \circ f)(x)$.

$$f(x) = \frac{1}{x}, \quad g(x) = 2\sqrt{x}$$

P CHT 2. 1. Describe how the graph of g differs from the graph of $f(x) = x^2$.

(a) $g(x) = 2 - x^2$ (b) $g(x) = \left(x - \frac{3}{2}\right)^2$

P CHT 2. 2. Find an equation of the parabola.

P CHT 2. 3. The path of a ball is given by $y = -\frac{1}{20}x^2 + 3x + 5$, where y is the height (in feet) of the ball and x is the horizontal distance (in feet) from where the ball was thrown.

- (a) Find the maximum height of the ball.
- (b) Which number determines the height at which the ball was thrown? Does changing this value change the coordinates of the maximum height of the ball? Explain.

P CHT 2. 4. Determine the right-hand and left-hand behavior of the graph of the function $h(t) = -\frac{3}{4}t^5 + 2t^2$. Then sketch the graph. Find the t and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate h and the corresponding values of h. Approximate the intervals over which h is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 2. 5. Divide using long division

$$\frac{3x^3 + 4x + 1}{x^2 + 1} \qquad \qquad \frac{2x^4 - 5x^2 - 3}{x - 2}$$

P CHT 2. 7. Use synthetic division to show that x = 5/2 is a zero of the function given by $f(x) = 2x^3 - 5x^2 - 6x^2 + 15$.

P CHT 2. 8. Perform each operation and write the result in standard form

(a) $10i - (3 + \sqrt{-25})$ (b) $(2 + \sqrt{3}i)(2 - \sqrt{3}i)$

P CHT 2. 9. Write the quotient in standard form: $\frac{5}{2+i}$.

P CHT 2. 10. Find a polynomial function **P CHT 2. 11.** Find a polynomial function with real coefficients that has the given zeros. With real coefficients that has the given zeros.

$$0, 3, 2+i$$
 $1-\sqrt{3}i, 2, 2$

P CHT 2. 12. Find all the zeros of

$$f(x) = 3x^3 + 14x^2 - 7x - 10.$$

P CHT 2. 13. Find all the zeros of

$$f(x) = x^4 - 9x^2 - 22x + 24.$$

P CHT 2. 14. Determine the right-hand and left-hand behavior of the graph of the function $h(x) = \frac{4}{x^2} - 1$. Then sketch the graph. Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate h and the corresponding values of h. Approximate the intervals over which h is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 2. 15. Determine the right-hand and left-hand behavior of the graph of the function

$$f(x) = \frac{2x^2 - 5x - 12}{x^2 - 16}.$$

Then sketch the graph. Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate h and the corresponding values of h. Approximate the intervals over which h is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 2. 16. Determine the right-hand and left-hand behavior of the graph of the function

$$g(x) = \frac{x^2 + 2}{x - 1}$$

Then sketch the graph. Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate h and the corresponding values of h. Approximate the intervals over which h is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 2. 17. Solve

$$2x^2 + 5x > 12.$$

Express your solution in interval notation and sketch a number line corresponding to that interval.

P CHT 2. 18. Solve

$$\frac{2}{x} \le \frac{1}{x+6}$$

Express your solution in interval notation and sketch a number line corresponding to that interval.

P CHT 3. 5. Determine the right-hand and left-hand behavior of the graph of the function

$$f(x) = 10^{-x}$$

Then sketch the graph. Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate f and the corresponding values of f. Approximate the intervals over which f is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 3. 6. Determine the right-hand and left-hand behavior of the graph of the function

$$f(x) = -6^{x-2}$$

Then sketch the graph. Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate f and the corresponding values of f. Approximate the intervals over which f is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 3. 7. Determine the right-hand and left-hand behavior of the graph of the function

$$f(x) = 1 - e^{2x}$$

Then sketch the graph. Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate f and the corresponding values of f. Approximate the intervals over which f is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 3. 8. Evaluate (a) $\log_7 7^{-0.89}$ (b) $4.6 \ln e^2$.

P CHT 3. 9. Determine the right-hand and left-hand behavior of the graph of the function

$$f(x) = -\log x - 6$$

Then sketch the graph. Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate f and the corresponding values of f. Approximate the intervals over which f is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 3. 10. Determine the right-hand and left-hand behavior of the graph of the function

$$f(x) = \ln(x - 4)$$

Then sketch the graph. Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate f and the corresponding values of f. Approximate the intervals over which f is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 3. 12. Determine the right-hand and left-hand behavior of the graph of the function

$$f(x) = 1 + \ln(x+6)$$

Then sketch the graph. Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate f and the corresponding values of f. Approximate the intervals over which f is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P (CHT	3.	15.	Expand
------------	----------------------	----	-----	--------

P CHT 3. 16. Expand

 $\ln \frac{5\sqrt{x}}{6}$

P CHT 3. 17. Expand

 $\log \frac{(x-1)^3}{y^2 z}$

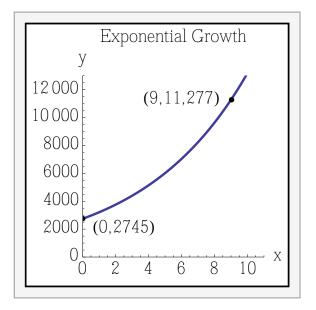
$$\log_2 3a^4$$

P CHT 3. 18. Condense	P CHT 3. 19. Condense	P CHT 3. 20. Condense
$\log_3 13 + \log_3 y$	$4\ln x - 4\ln y$	$3\ln x - \ln(x+3) + 2\ln y$

P CHT 3. 21. Solve P CHT 3. 22. Solve P CHT 3. 23. Solve

 $\frac{1025}{8 + e^{4x}} = 5$ $5^x = \frac{1}{25}$ $3e^{-5x} = 132$

P CHT 3. 24. Solve

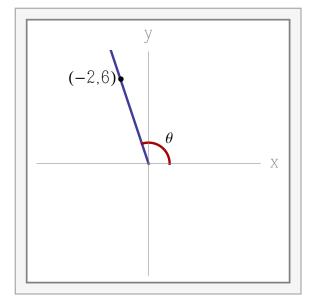

$$\ln x = \frac{1}{2}$$

P CHT 3. 25. Solve

$$18 + 4 \ln x = 7$$

P CHT 3. 26. Solve

 $\log x + \log(x - 15) = 2$


P CHT 3. 27. Find an exponential growth model for the graph shown

P CHT 3. 28. The half-life of radioactive actinium (²²⁷Ac) is 21.77 years. What percent of a present amount of radioactive actinium will remain after 19 years?

P CHT 4. 1. Consider an angle that measures $\frac{5\pi}{4}$ radians.

(a) Sketch the angle in stan (b) Determine two coterminal
(c) Convert the angle to de angles (one positive and one negative).

P CHT 4. 4. Find the exact values of the six trigonometric functions of the angle θ shown.

P CHT 4. 5. Given $\tan \theta = \frac{3}{2}$, find the other five trigonometric functions of θ (Assume θ is in the Quadrant III).

P CHT 4. 6. Determine the reference angle θ' for the angle $\theta = 205^{\circ}$ and sketch θ and θ' in standard position.

P CHT 4. 7. Determine the quadrant in which θ lies if sec $\theta < 0$ and $\tan \theta > 0$.

P CHT 4. 8. Find two exact values of θ in degrees $(0 \le \theta \le 360^\circ)$ if $\cos \theta = -\frac{\sqrt{3}}{2}$.

P CHT 4. 9. Find two exact values of θ in radians $(0 \le \theta \le 2\pi)$ if $\csc \theta = 1.030$.

P CHT 4. 10. Find the remaining five **P** CHT 4. 11. Find the remaining five trigonometric functions of θ satisfying trigonometric functions of θ satisfying

$$\cos \theta = \frac{3}{5}, \quad \tan \theta < 0.$$
 $\sec \theta = -\frac{29}{30}, \quad \sin \theta > 0.$

P CHT 4. 12. Graph (Include two full periods)

$$g(x) = -2\sin\left(x - \frac{\pi}{4}\right).$$

Find the amplitude, period, phase shift, and midline. Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate g and the corresponding values of g. Approximate the intervals over which g is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 4. 13. Graph (Include two full periods)

$$f(\alpha) = \frac{1}{2}\tan 2\alpha$$

Find the period. Find the α and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate f and the corresponding values of f. Approximate the intervals over which f is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 4. 17. Find the exact value of $\cot\left(\arcsin\frac{3}{8}\right)$.

P CHT 4. 18. Graph

$$f(x) = 2\arcsin\left(\frac{1}{2}x\right)$$

Find the x and y-intercepts and asymptotes (if any). Include a table of "nice" values for which to evaluate f and the corresponding values of f. Approximate the intervals over which f is increasing, decreasing, or constant. Determine whether the function is even, odd, or neither.

P CHT 5. 1. If $\tan \theta = \frac{6}{5}$ and $\cos \theta < 0$, find all six trigonometric functions of θ .

P CHT 5. 2. Simplify	P CHT 5. 3. Simlify	P CHT 5. 4. Simplify
$\csc^2eta(1-\cos^2eta)$	$\frac{\sec^4 x - \tan^4 x}{\sec^2 x + \tan^2 x}$	$\frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta}$

P CHT 5. 5. Verify	P CHT 5. 6. Verify	P CHT 5. 7. Simplify
		$\csc \alpha + \sec \alpha$ = $\cot \alpha + \tan \alpha$

 $\sin\theta \sec\theta = \tan\theta$

 $\sec^2 x \tan^2 x + \sec^2 x = \sec^4 x$ $\frac{\csc \alpha + \sec \alpha}{\sin \alpha + \cos \alpha} = \cot \alpha + \tan \alpha$

P CHT 5. 8. Verify

 $\tan\left(x + \frac{\pi}{2}\right) = -\cot x$

P CHT 5. 9. Verify $\sin(n\pi + \theta) = (-1)^n \sin \theta,$ where n is an integer.

P CHT 5. 10. Simplify

 $(\sin x + \cos x)^2 = 1 + \sin 2x$

P CHT 5. 15. Find all solutions to

P CHT 5. 16. Find all solutions to

 $\tan^2 x + \tan x = 0,$

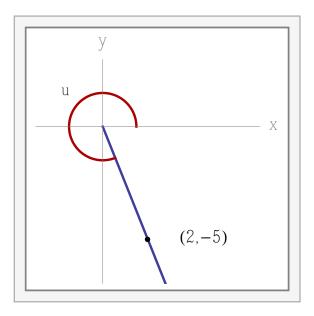
on the interval $[0, 2\pi)$.

 $\sin 2\alpha - \cos \alpha = 0$

on the interval $[0, 2\pi)$.

P CHT 5. 17. Find all solutions to

$$4\cos^2 - 3 = 0,$$


on the interval $[0, 2\pi)$.

 $\csc^2 x - \csc x - 2 = 0,$

on the interval $[0, 2\pi)$.

P CHT 5. 19. Find the exact value of $\cos 105^{\circ}$

P CHT 5. 20. Use the figure to find the exact values of $\sin 2u$, $\cos 2u$, and $\tan 2u$.

