Ma 221. Syllabus. Summer 2013.

Instructors: Pavel Dubovski, <u>pdubovsk</u> @ stevens Aori Nevo , anevo @ stevens

Classes: MTWR 2:00-4:00, Morton 103.

Office hours: P.Dubovski: Kidde 226, M, W 1-2 and by appointment.

Textbook:

 [1] Nagle, Saff, and Snider, "Fundamentals of Differential Equations and Boundary Value Problems," 6th edition, Addison Wesley. ISBN 032161321X
[2] M.Tenenbaum and H.Pollard, "Ordinary Differential Equations", Dover. ISBN 0486649407.

Syllabus:

Week 1 (May 16-17)

1.1-1.3 Direction Fields. Isoclines	1.1: # 1-17.
	1.2: # 1, 2, 9, 10, 20, 21, 23-28, 30, 31.
	1.3: #3, 4, 5, 7, 9, 17, 18.
1.4, 1A, 1D. Euler method.	1.4 # 6, 10, 15, 16.
Taylor series method.	1A. Using Taylor series method, solve the following
Phase portrait: Fixed points, Stability	equations. Estimate the convergence interval for the
	series:
	(1) $y'+3y=x^2$, $y(0)=1$.
	(2) $y''-y=1$, $y(0)=1$.
	1D. Sketch phase portrait for equations:
	(1) y'=y(1+y)(2-y)
	$(2) y'=y(1+y)(2-y)^2$
	$(3) y'=y(1+y)(2-y)^3$
	$(4) y'=y^2-5y+6$
	Find fixed points and determine, which of them are
	stable, unstable, or neither.
Hw1 due on Wednesday 5/22	1.2: # 2, 10, 20
	1.3: # 5
	1.4: # 6
	Using Taylor series method, solve equation $y'+3y=x^2$,
	y(0)=1.
	Sketch phase portrait for equation $y'=y(1+y)(2-y)$.

Week 2 (May 20-24)

2.1, 2.2, 2.3 Separable equations. Linear	2.2: #7,8,13,15,16,18,20,26,27(a-c),34,38
Equations: Integrating factor, Variation of	2.3: #7,8,14,15,18,20,21,22,30,32,33.
parameters.	
2.4 Exact Equations	2.4: # 10, 11, 13, 14, 19, 22, 23, 25, 27, 28, 29,
	30, 31, 33(a-d).
2.5, 2.6 Integrating factors. Substitutions.	2.5: # 7, 9, 10, 11, 13, 14, 15, 17, 18
	2.6: # 11, 12, 13, 15, 18, 19, 20, 41.
2.6, 2D Transformations	2.6: # 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 42
Chapter 2 – review;	Review # 1-15, 31-35;
2E – Clairaut equation	2.6 # 33-40, 43;
	2E # (d,e).
	Review # 16-30, 36-40; # 3 (p.82);
Ch. 2 –review; 2H – asymptotics;	2E (a-e);
Integral curves; Riccati eqn.	2.6: #45, 46
Hw2 due on Tuesday 5/28	2.2: # 8, 16, 18, 38
ý	2.3: # 8, 14, 18, 20, 22, 30
	2.4: # 10, 14, 22, 28, 30
	2.5 # 10, 14
	2.6 # 24, 26, 28, 34, 36, 38
	Review # 4, 8, 12, 16, 20, 24, 28, 32, 36, 40
	2E (d)

week 5 (indy 20 51)	
4.1, 4.2, 4.3	4.1: # 4, 5, 7, 8
Homogeneous second-order linear equations	4.2: # 1, 2, 3, 4, 13, 14, 15, 16, 17, 18
	4.3: # 9-14, 21-26, 28, 31, 32, 34
4.4, 4.5, 4.6 Inhomogeneous linear equations	4.4: # 9-14
	4.5 # 17-22, 23-30
	4.6: # 1-10
6.1, 6.2	6.1: # 16, 17, 19, 20
	6.2: # 1-6, 15, 19-21
Eigenvalue problems	Solve equations:
	(1) $y''+y'-2y=0$, $y(0)=0$, $y(1)=1$
	(2) $2y''+y'-3y=1$, $y(0)=1$, $y(1)=0$
	(3) $y''+y'-2y=x, y(0)=2, y(1)=1$
	Find λ for which the following equations have
	nonzero solutions:
	(4) $y'' + \lambda y = 0, y(0) = y(1) = 0.$
	(5) $y'' + \lambda y = 0, y(0) = y(\pi) = 0.$
	(6) $y'' + \lambda y = 0, y(0) = y(L) = 0.$
	(7) $y'' + \lambda y = 0, y'(0) = y(L) = 0.$
	(8) $y''+\lambda y=0, y(0)=y'(L)=0.$
	(9) $y'' + \lambda y = 0, y'(0) = y'(L) = 0.$
Hw3 due on Wednesday 6/5	4.1: # 8
	4.2: # 2, 14
	4.3: #10, 28, 32
	4.4: # 10, 14
	4.5: # 18, 22, 30
	4.6: # 2, 6
	6.1: # 16, 20
	6.2: # 4, 6, 20

Week 3 (May 28-31)

Week 4 (June 3-7)

4.7 Cauchy-Euler equations.	4.7 # 9-18, 19-20, 37-40, 41-43, 44, 45-49
Reduction of Order	
7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8	7.8 # 14-20;
	7.7 # 15-22
	7.6 # 29-37
No Hw due this week	

Week 5 (June 10-14)

PDEs	10.2 # 9-14, 15-18
10.2, 10.3, 10.4, 10.5, 10.6, 10.7	10.5 # 1-5, 9, 10, 13, 14.
	10.6 # 1-4, 7, 8, 13-18
	10.7 # 1-5, 7, 8, 11-13.
Hw4 due on Tuesday 6/18	4.7 # 10
	7.8 # 20
	7.7 # 22
	7.6 # 36
	10.2 #14
	10.5 # 4, 14
	10.6 # 4, 8.
	10.7 # 4, 12.

Week 6 (June 17-21)

MT – Review	Review all the above problems
Wednesday 6/19 – midterm exam	
Thursday – solution of the exam.	

Final Exam (cumulative): Saturday June 29.