1.4 The Approximation Method of Euler

Name:

Date: May 21, 2013

P 6. Use Euler's Method with step size h = 0.2 to approximate the solution to the initial value problem

$$y' = \frac{1}{x}(y^2 + y), \quad y(1) = 1$$

at the points x = 1.2, 1.4, 1.6, and 1.8.

P 10. Find a value of h for Euler's method such that y(1) is approximated to within ± 0.01 , if y(x) satisfies the initial value problem

$$y' = x - y, \quad y(0) = 0.$$

Also, find to within ± 0.05 , the value of x_0 such that $y(x_0) = 0.2$. Compare your answers with those given by the actual solution $y - e^{-x} + x - 1$. Graph the polygonal-line approximation and the actual solution on the same coordinate system.

P 15. Newton's Law of Cooling. Newton's law of cooling states that the rate of change of the temperature T(t) of a body is proportional to the difference between the temperature of the medium M(t) and the temperature of the body. That is,

$$\frac{dT}{dt} = K[M(t) - T(t)],$$

where K is a constant. Let $k = 1(min)^{-1}$ and the temperature of the medium be constant, $M(t) \equiv 70^{\circ}$. If the body is initially 100°, use Euler's method with h = 0.1 to approximate the temperature of the body after

(a) 1 minute.

(b) 2 minutes.

P 16. Stefan's Law of Radiation. Stefan's law of radiation states that the rate of change in temperature of a body at T(t) degrees in a medium at M(t) degrees is proportional to $M^4 - T^4$. That is,

$$\frac{dT}{dt} = K(M(t)^4 - T(t)^4),$$

where K is a constant. Let $K = (40)^{-4}$ and assume that the medium temperature is constant, $M(t) \equiv 70^{\circ}$. If $T(0) = 100^{\circ}$, use Euler's method with h = 0.1 to approximate T(1) and T(2).