P 3. A model for the velocity v at time t of a certain object falling under the influence of gravity in a viscous medium is given by the equation

$$\frac{dv}{dt} = 1 - \frac{v}{8}.$$

From the direction field shown below, sketch the solutions with the initial conditions $v(0) = 5, 8,$ and 15. Why is the value $v = 8$ called the “terminal velocity”?

Figure 1: Direction field for $\frac{dv}{dt} = 1 - \frac{v}{8}$
P 4. If the viscous force in P3 is nonlinear, a possible model would be provided by the differential equation

$$\frac{dv}{dt} = 1 - \frac{v^3}{8}.$$

Redraw the direction field in P3 to incorporate this v^3 dependence. Sketch the solutions with initial conditions $v(0) = 0, 1, 2, 3$. What is the terminal velocity in this case?
The logistic equation for the population (in thousands) of a certain species is given by
\[\frac{dp}{dt} = 3p - 2p^2. \]

(a) Sketch the direction field by using either a computer software package or the method of isoclines.

(b) If the initial population is 3000 [That is, \(p(0) = 3 \)], what can you say about the limiting population \(\lim_{t \to \infty} p(t) \)?

(c) If \(p(0) = 0.8 \), what is \(\lim_{t \to \infty} p(t) \)?

(d) Can a population of 2000 ever decline to 800?
Consider the differential equation
\[\frac{dp}{dt} = p(p - 1)(p - 2) \]
for the population \(p \) (in thousands) of a certain species at time \(t \).

(a) Sketch the direction field by using either a computer software package or the method of isoclines.

(b) If the initial population is 4000 [that is, \(p(0) = 4 \)], what can you say about the limiting population \(\lim_{t \to \infty} p(t) \)?

(c) If \(p(0) = 1.7 \), what is \(\lim_{t \to \infty} p(t) \)?

(d) If \(p(0) = 0.8 \), what is \(\lim_{t \to \infty} p(t) \)?

(e) Can a population of 900 ever increase to 1100?
P 9. Let \(\phi(x) \) denote the solution to the initial value problem

\[
\frac{dy}{dx} = x - y, \quad y(0) = 1.
\]

(a) Show that \(\phi''(x) = 1 - \phi'(x) = 1 - x + \phi(x) \).

(b) Argue that the graph of \(\phi \) is decreasing for \(x \) near zero and that as \(x \) increases from zero, \(\phi(x) \) decreases until it crosses the line \(y = x \), where its derivative is zero.

(c) Let \(x^* \) be the abscissa of the point where the solution curve \(y = \phi(x) \) crosses the line \(y = x \). Consider the sign of \(\phi''(x^*) \) and argue that \(\phi \) has a relative minimum at \(x^* \).

(d) What can you say about the graph of \(y = \phi(x) \) for \(x > x^* \)?

(e) Verify that \(y = x - 1 \) is a solution to \(\frac{dy}{dx} = x - y \) and explain why the graph of \(\phi(x) \) always stays above the line \(y = x - 1 \).

(f) Sketch the direction field for \(\frac{dy}{dx} = x - y \) by using the method of isoclines or a computer software package.

(g) Sketch the solution \(y = \phi(x) \) using the direction field in (f).
P 17. From a sketch of the direction field, what can one say about the behavior as \(x \) approaches \(\infty \) of a solution the the following?

\[
\frac{dy}{dx} = 3 - y + \frac{1}{x}
\]

P 18. From a sketch of the direction field, what can one say about the behavior as \(x \) approaches \(\infty \) of a solution the the following?

\[
\frac{dy}{dx} = -y
\]