Exam 1 Review Problems

Name:

Date:

P 1. Find $\frac{\partial R}{\partial x}$ and $\frac{\partial R}{\partial y}$ for

$$R = \ln \left(u^2 + v^2 + w^2 \right),\,$$

when x = y = 1 and where u = x + 2y, v = 2x - y, and w = 2xy.

P 2. Consider the function $u = \frac{1}{x + at}$, defined when $x + at \neq 0$.

(a) Determine whether or not u satisfies the wave equation,

$$u_{tt} = a^2 u_{xx}.$$

(b) Show that $u_{tx} = u_{xt}$.

P 3. Let $f(x, y) = x^2y + x \ln y$, with x = s + 2t and y = 3st. Find $\frac{\partial f}{\partial t}$.

P 4. Consider the equation $2x^2yz = 3xy + xz - yz$. Assume that it determines a function z = f(x, y). Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

P 5. Consider the function

$$f(x, y, z) = e^{xy} \sin(x - z)$$

- (a) Find the rate of change of f at the point (2,1,2) in the direction of the vector (2,1,3).
- (b) What is the maximum rate of change at (2, 1, 2)? In what direction does the rate of change occur?

P 6. If $f(x, y, z) = zxe^y$, find the rate of change of f at the point P(2, 0, 1) in the direction from P to Q(1, 2, 3).

P 7. Find the directional derivative of the function

$$f(x, y, z) = x^2y + x\sqrt{1+z}$$

at (1, 2, 3) in the direction of $\vec{v} = 2\vec{i} + \vec{j} - 2\vec{k}$.

P 8. If you are at the point (2, 1, H(2, 1)) on the surface $H(x, y) = x^2 - xy + 2y^2$, determine,

- (a) the rate of change of H in the direction of the origin;
- (b) a unit vector that points in the direction of steepest descent.

P 9. Assuming that the equation $x^2 + yz - y^2 + z^3 - 1 = 0$ determines a function z = f(x, y), determine the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

P 10. Find an equation of the tangent plane to the surface $z = ye^{x/y}$ at (1, 1).

P 11. Find the differential of

$$h(x,t) = e^{-3t}\sin(x+5t)$$

P 12. An unevenly heated plate has temperature T(x, y) in °C at the point (x, y). If T(2, 1) = 135, and $T_x(2, 1) = 16$, and $T_y(2, 1) = -15$, estimate the temperature at the point (2, 04, 0, 97).

P 13. Find the best quadratic approximation for $f(x, y) = \ln(1 + x - 2y)$ for (x, y) near (0, 0).

P 14. Find the quadratic Taylor polynomial valid near (1,0) for $f(x,y) = \sin(x-1)\cos y$.

P 15. At what point on the surface $z = 1 + x^2 + y^2$ is the tangent plane parallel to the following planes?

z = 4 and z = 2 + 6x - 4y.