Exam 1 Review Problems

Name: Date:

P 1. Given the infinite series

(a) Find a formula for the general term a,,.

(b) Find out if the series converges. Explain why.



P 2. Given the infinite series

e 1 1 1
by = —34+1—=4=— —+...
; ity T

(a) Find a formula for the general term b,,.

(b) Find out if the series converges. Explain why.



P 3. Determine whether the series are convergent or divergent. Explain.
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P 4. Find out if the series converges absolutely. Explain.
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P 5. A ball is dropped from a height of 10 feet. Each time it hits the ground, it bounces to 80%
of its previous height. Find the total distance traveled by the ball.



P 6. Suppose
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determine whether the series converges, diverges, or ther is not enough information to determine
convergence or divergence. Justify your answers.



P 7. Find the Taylor series expansion for the following. Give your answer in compact form (i.e.
find the general term).

(a) f(z) = cos (%), centered at a = 2

(b) f(z) = xIn(1 + x), centered at a = 0 (i.e. Maclaurin series).



P 8. Find the Taylor series for f(z) = x3 about = = 2.



P 9. Let

(a) Find the third-degree Taylor polynomial for f(x) about = = 0.

(b) Estimate f(0.5) using the Taylor polynomial found in part (a).



P 10. Let f(z) = x
(a) Find the second-degree Taylor polynomial P(z) for f(x) about x = 4.

(b) Provide a bound for the error in the approximation v/5 ~ P,(5). Express your bound as a
rational number. (You do not need to compute P5(5)).



P 11. Consider the equation

1
ln(1+x):§—x

(a) Explain why the equation could have a solution for z close to 0.

(b) Estimate the solution of the equation using the second-degree Taylor polynomial for In(1+z).



P 12. Find the Maclaurin series for



P 13. Find the interval of convergence for the power series
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P 14. Find the interval of convergence for the power series
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(a and b are fixed constants with b > 0).



P 15. For what values of  does
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converge?



x
P 16. Expand f(z) = 3 into a power series centered at 0, and find its interval of convergence.
x



P 17. Find the sum of the series
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P 18. Determine the radius of convergence
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P 19. Find the limit )
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